
Journal of  Statistical Physics, Vol. 9, No. 3, 1973 

Replies to Tribus and Motroni 
and to Gage and Hestenes 
Kenneth  Fr iedman ~ 

Received 34arch 30, 1973 

An earlier criticism of Jaynes's maximum-entropy prescription is vindicated 
with respect to two recent replies to that criticism. 
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Both Tribus and Motroni (1) and Gage and Hestenes (2/ defend Jaynes's 
maximum-entropy prescription against a criticism by Friedman and 
Shimony.~/This criticism purports to find a difficulty verging on inconsistency 
in Jaynes's prescription and argues as follows: Consider a system about which 
the only information b is our background knowledge including the values of 
the energy states of the system. Then Jaynes's prescription assigns probabilities 
to the energy states in accordance with 

P(hi ]b) = 1/n (1) 

If one obtains the additional information d~ that the posterior expected 
value of the energy E is e, Jaynes's prescription yields 

P(hi [b a d~) : e -r • ( ~  e-~&) -1 (2) 

where/3 is a monotonically decreasing function of e. 
Equations (1) and (2) are consistent only under the assumption that 

P(z j b~ : ~ (, - (1/,,) 2 E,) 
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Thus Jaynes's prescription is consistent only if one has prior certainty 
that the posterior expected energy of the system will equal its mean energy 
(i.e., that the temperature of the reservoir with which the system is in equili- 
brium is infinite). 

I consider the comments of Tribus and Motroni first. They write (Ref. 1, 
p. 228) 

"It is obvious that ... the statement 'The expected value of E is �89 -{- l)' 
[which Friedman and Shimony designate de~(~+z)/=] leads to precisely the same 
distribution as the statement 'I have no reason to choose one value of i over 
another.' [which Friedman and Shimony designate b]. The information theory 
interpretation of this result is quite simple: Entropy measures what is un- 
known. Many statements in the English language lead to the same entropy 
because they say the same thing." 

Two comments appear in order. First, the claim that the two cited 
statements say the same thing begs the question. The former statement plus 
Jaynes's prescription implies the latter; the latter plus Jaynes's prescription 
implies the former. Yet the acceptance of Jaynes's prescription is just the 
issue in question. Moreover, as the first statement is used by Jaynes and 
others, it should be amended to read, "We have positive information about 
the posterior expected value of E, and enough to fix that value as (l/n) Z E~ 2' 
This is the point of the identification of the measured energy with the expected 
energy. The second statement should read, "We have no information about  
the system except for the values of the possible energy states." On these 
readings the two statements are clearly not equivalent. 

Second, the difficulty with Jaynes's prescription does not stem from the 
fact that the two conditioning statements cited by Tribus and Motroni lead 
to the same probability distribution. Rather, it stems from the fact, illustrated 
by their second graph (Ref. 1, p. 228), that given the nature of the information 
we are considering, the posterior probability of the mean energy state (in 
this case E = 4) can never be revised upward, but must be revised downward 
for almost any value of E. According to a Bayesian account that a prior 
probabili ty cannot be revised upward (given the type of information being 
considered), but will with probability p be revised downward, implies that 
unless p = 0 the prior probability must be too high. 

The comment  by Gage and Hestenes finds two inaccuracies in the paper 
of  Friedman and Shimony. We consider the latter inaccuracy first. They 
write (Ref. 2, p. 90), "Second, just following their Eq. (6) Friedman and 
Shimony state that the background information b does not in general imply 
a definite value of E." Gage and Hestenes contest this point. From (1) they 
derive 

= ~ &P(/ ' i  I b) = (l/n) y~ < (3) 
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This is unexceptionable. They continue, however, "This can be expressed 
alternatively by writing 

l j b) : - E , ) , ,  (4) 

This may be the basis of Tribus and Motroni's claim that the two 
statements they consider say the same thing. However, Eq. (4) is not equivalent 
to Eq. (3). Equation (3) just states what the expected energy is according to 
our prior distribution. Given the tentative nature of that prior distribution, 
the probability that our prior estimate of the expected energy is correct is 
surely less than unity. Yet Eq. (4) denies this. Indeed, if Eq. (4) were correct, 
it is not clear how a Bayesian could establish that evidence can ever fix the 
posterior expected value of any variable at any value different from its prior 
expected value. It is not clear how one could justify Jaynes's identification 
of the measured energy with the average energy (at least when the measured 
energy differs from (l/n) Z Ei ). 

Perhaps the motivation for the transition from (3) to (4) is the existence 
of limit theorems to the effect that as the length of a sequence of independent 
trials, each yielding a value E~ (1 ~ i ~< n), increases, the fraction of E[s  
approaches P(E~). Thus if the probability distribution over the n energy 
states is a uniform one, the central limit theorem yields 

) c~ 

For any c~, and hence for any value of the right-hand side of (5) less 
than unity, there is a value o fm  such that the left-hand side of (5) is satisfied. 
Thus for any positive q and e2, as the length of the sequence increases 
indefinitely, the probability of the average energy lying within q of (1 In) ~ E~ 
is greater than 1 -- e2 �9 This result can be derived in other ways, e.g., from a 
generalization of the Laplace-DeMoivre limit theorem to the multinomial 
distribution.(4~ 

The independence of the trials is a necessary assumption in all of these 
derivations. Yet this assumption is not warranted in the situation we are 
considering. If  for a very large value of m the first m trials strongly favor a 
proper subset of the energy spectrum, it is very likely that  subsequent trials 
will do so as well. Thus in general the probability that the (m + 1)th trial 
will yield a particular energy state depends on whether it is conditioned by 
just our background knowledge, or by our background knowledge and also 
our knowledge of the first m trials. Hence the trials are not statistically 
independent. 

(The reply that the sequence of energy states generated by a thermo- 
dynamic system in thermal equilibrium with a reservoir is a statistically 
independent sequence is unsatisfactory. The probabilities we are considering 
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either measure a reasonable degree of belief in the occurrence of various 
energy states at a given time or measure the physical propensity for a ther- 
modynamic system to be in certain energy states. If  we adopt the former 
interpretation, it is legitimate to postulate a prior uniform distribution, but 
incorrect to suppose that the energy states in the sequence are statistically 
independent. On the latter interpretation it is legitimate to suppose that the 
energy states in the sequence are statistically independent, but it is unclear that 
one can talk meaningfully about a prior distribution over the energy states.) 

The first alleged inaccuracy cited by Gage and Hestenes seems unrelated 
to this argument, but it introduces an interesting ramification. They write 
(Ref. 2, p. 90), 

"First, just before their Eq. (4) they introduce d~ as the 'evidence that the 
posterior expected value of (a dynamical variable) E is E.' Later they admit 
that this definition of d~ is less than clear. However, their use of d~ in 
connection with Jaynes's algorithm demands that it is equivalent to the well- 
defined proposition 'the expected value of E is e." 

This "inaccuracy" is not an inaccuracy in the interpretation of Jaynes, 
but rather reveals another difficulty with Jaynes's algorithm. The reason for 
the problem in interpreting d~ as fixing the expected value of the energy at a 
single point is that no finite amount of evidence can imply that the expected 
value of a statistical variable is a definite value. Indeed, if we make the not 
altogether unreasonable assumption that P(d~j b) is a uniformly continuous 
function of E, then for any finite amount of evidence e and for any value of E, 
e(dr ] b & e) ~- O. 

It may be more reasonable to think of dE as "evidence that the posterior 
expected value of the energy lies between certain limits _E and E (E < E)." 
However, even this fails to render Eqs. (1) and (2) mutually compatible under 
reasonable assumptions. 

Presumably, Jaynes's prescription now chooses that probability distribu- 
tion with the greatest entropy out of all those distributions whose expected 
value of E lies in the interval [_E, E]. However, if _E ~< 1/nY'. El <~ E, this dis- 
tribution will just be the uniform distribution, the same distribution we would 
obtain had we interpreted dE as "evidence that the posterior expected value 
of E is exactly ~l/n) ~ E~ ." If E < (l/n) ~ E~ (E > (l/n) ~ Ei), the pro- 
bability distribution with the greatest entropy is one whose expectation 
value of the energy is _E (E). This is the same distribution we would have 
obtained had we interpreted d~ as "evidence that the posterior expected value 
of the energy is exactly E (E)." 

Thus the incompatibility between Eq. (1) and (2) can be avoided by this 
reinterpretation of d~ only if 

P(E ~ (I/n) ~ E~ ~ E) = 1 (6) 
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However ,  (a) this constraint  does not  seem reasonable,  and (b) carrying out  
Jaynes 's  prescr ipt ion subject to this constraint  will always yield the uni form 
distr ibution as the poster ior  distribution. 
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